
1.  Introduction
Estimates of surface heat fluxes in the world's oceans and coastal regions are of paramount importance to our 
understanding of both inter-annual and intra-annual variability. Seasonal cycles driven by annual variation in 
surface heat fluxes are ubiquitous in biological, physical, and chemical processes. Obtaining accurate values 
for surface heat fluxes, particularly for long-term means, is, however, difficult. Starting in 1992, the Coupled 
Ocean-Atmosphere Response Experiment (COARE) has developed algorithms to estimate ocean surface fluxes 
from standard meteorological measurements (Fairall et  al.,  2003). Although estimating surface fluxes using 
COARE bulk formulae is easier than via the direct covariance measurements they are designed to surrogate, 
significant meteorological data is nevertheless required.

2.  Model Implementation
2.1.  Model Background

Other numerical hydrodynamic models of the Long Island Sound (LIS) region include the coastal transport model 
described by Wilson et al. (2005), the New York Harbor Observing and Prediction System (NYHOPS) model 
described by Georgas et al. (2016), and the LIS ROMS implementation described by Jia and Whitney (2019). 
The domain of the Long Island Sound FVCOM model (LIS-FVCOM) described herein is shown in Figure 1. 
LIS-FVCOM implements the FVCOM model described by Chen et al. (2007) and uses the results of the oper-
ational northwest Atlantic regional model, operated as the Northeast Coastal Forecast System (NECOFS), to 
provide ocean boundary conditions and meteorological forcing. This “nesting” approach is computationally 
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efficient since it allows the effect of the larger-scale processes to be simulated at coarse resolution through 
NECOFS and allows LIS-FVCOM computing resources to focus on the smaller-scale structures in LIS and 
Block Island Sound. Figure 1 also shows the bathymetry of the region and the locations of the freshwater sources 
used in the model. Our implementation uses GOTM (Burchard et al., 1999) to model vertical turbulent mixing. 
O’Donnell et al. (2015b) found that a bottom roughness value of 𝐴𝐴 𝐴𝐴0 = 1 cm provided the best representation of 
bed stresses within LIS in the FVCOM model and this value was used throughout the entire domain.

2.2.  Initial Conditions

LIS-FVCOM was initialized for 2012 using a temperature and salinity climatology data set derived via objective 
interpolation (OI) of Connecticut Department of Energy and Environmental Protection (CTDEEP) station data as 
described by O'Donnell et al. (2015b), and data in the NOAA archive as described by Codiga and Ullman (2011). 
These fields were then linearly interpolated to the LIS-FVCOM grid. The 2013 model runs were initialized using 
end-of-year conditions from the 2012 run.

2.3.  Sea Surface Height Forcing

LIS-FVCOM is forced at the seaward boundaries by sea level variations and salinity and temperature. The sea 
level was initially prescribed using tidal constituents derived from the global tidal model (Egbert et al., 1994). 
Since the Egbert et al. (1994) constituents are not precise in shelf areas, the amplitudes and phase of the major 
constituents were iteratively adjusted to improve the representation of the amplitude and phase at each tidal 
frequency using NOAA tidal height observations from 2010 at Montauk (NY), New London (CT), New Haven 
(CT), Bridgeport (CT), and King's Point (NY). Each constituent amplitude and phase was adjusted by the propor-
tional amplitude error and phase error to improve the model. Subtidal fluctuations at the open boundary are incor-
porated from the NECOFS system by de-tiding and low-pass filtering the NECOFS solution at the open boundary 
locations using t-tide (Pawlowicz et al., 2002) and a 25-hr raised cosine low-pass filter. The NECOFS subtidal 

Figure 1.  Map of southern New England showing the LIS-FVCOM model grid (colored region). Model bathymetry is shown 
by the color scale and the locations of freshwater sources are shown by light blue dots (from left to right: Hudson River, New 
York City wastewater treatment plants, Housatonic River, Quinnipiac River, Connecticut River, Niantic River, and Thames 
River). The location of the western Long Island Sound buoy is shown in magenta.
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solution was then combined with a time series of tidal heights generated using the improved open-boundary tidal 
constituents.

2.4.  Wind Stress Forcing

The LIS-FVCOM model is forced using domain-variable winds derived from the Weather Research and Fore-
casting (WRF) model run as hindcasts at UMass, Dartmouth as part of the New England Coastal Ocean Forecast 
System (NECOFS). (See https://comt.ioos.us/projects/necofs_transition for more details).

2.5.  Model Freshwater Inputs

Freshwater enters the LIS-FVCOM domain through seven model cells corresponding to the locations of the 
Thames, Connecticut, Niantic, Quinnipiac, Housatonic, and Hudson rivers and New York City wastewater 
treatment plants (WWTPs) (see Figure  1 for locations). These fluxes are based on flow rates, Ri, measured 
by the USGS at Thompsonville, CT, and lagged by 1 day to account for the distance between the head of the 
Connecticut River in our model and Thompsonville. Each Ri is adjusted using the USGS Thompsonville data as 

𝐴𝐴 𝐴𝐴𝑖𝑖 = 1.20𝑅𝑅𝐶𝐶𝐶𝐶

(

𝑅𝑅𝑖𝑖∕𝑅𝑅𝐶𝐶𝐶𝐶

)

 where RCT is the day-specific Connecticut River flow, 𝐴𝐴 𝑅𝑅𝐶𝐶𝐶𝐶  is the mean Connecticut 

River flow, and 𝐴𝐴 𝑅𝑅𝑖𝑖 is the mean flow for river i. The factor of 1.20 follows from the salt budget of Gay et al. (2004) 
and accounts for the portion of the watersheds of the rivers below the USGS gauges. A fixed input of 40 m 3 s −1 
was added to the East River to represent the freshwater discharged from New York WWTPs.

2.6.  Heat Forcing and SST Data Assimilation

LIS-FVCOM uses heat fluxes obtained from the NECOFS WRF model. However, the NECOFS WRF heat 
fluxes substantially underestimated the fall and winter cooling at LIS locations as evidenced by unrealistically 
high wintertime water temperatures (e.g., Figures 2a and 2c). To offset this limitation, we assimilated sea surface 
temperatures (SSTs) into the model using 4 km NASA MODIS Aqua 8-day composited and de-clouded (level 

Figure 2.  Comparison of model temperature predictions (gray) with observations (red) in Long Island Sound (LIS) during 2013 with and without sea surface 
temperature (SST) data assimilation. (a, c) show comparisons when the model is forced using only Weather Research and Forecasting heat fluxes; (b, d) show the 
comparisons when MODIS-a SST is also assimilated into the model. (a, b) show comparisons of near-bottom temperatures at seven locations in the ELIS and Block 
Island Sound during 2013 (see O’Donnell et al., 2015a); (c, d) show comparisons of near-surface temperatures at the LISICOS Execution Rocks buoy.

https://comt.ioos.us/projects/necofs_transition
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3) night-time satellite data (OBPG, 2015). SST was assimilated into the surface sigma layer using a nudging 
approach. This form of SST data assimilation adds small corrections to the LIS-FVCOM surface layer temper-
atures based on their differences to the SST values. See Chen et al. (2013) for further details. A nudging factor 
was chosen such that the time scale of the nudging was at or above the 8-day time scale of the SST satellite obser-
vations. The NECOFS WRF data set was still used for direct heat forcing of the model. In this way, short-term 
variations in the surface heat fluxes that are well-represented in WRF such as those due to diel insolation cycles or 
intermittent cloud cover are preserved while longer-term bias errors such as those due to misestimation of latent 
fluxes in the WRF model are corrected before they can create unrealistic model temperatures.

Because the NASA SST product has erratic coverage in cells that are close to the coast, we pre-screened the entire 
data set to keep only data from cells that had at least 86.7% coverage (i.e., we removed all data from those cells 
with 7 or more missing 8-day SSTs out of the total of 45 8-day records for the 2013 years). The remaining SST 
data were first linearly interpolated in time to fill any temporal gaps and then spatially interpolated to fill in any 
missing cells using the nearest neighboring cell with good coverage. An effect of this pre-screening and interpo-
lation methodology is that values in cells at the coast where coverage is poor are replaced with the values from 
the nearest offshore cell with good coverage. Note that due to coarse spatial and temporal scales of the satellite 
data and the need to interpolate missing data, the SST assimilation does not capture fine-scale features such as 
near-shore shoals or the Connecticut River plume front.

Figure 2 shows time series of model-to-data temperature comparisons both with and without the SST assimila-
tion. Note that the improvement in the bottom temperatures (panels a and b) is similar to the improvement in the 
surface temperatures (panels c and d), indicating that the model is capturing the downward and horizontal heat 
fluxes adequately.

3.  Model Validation
3.1.  Skill Metrics

To assess the quantitative model performance, we use the “skill”, s, statistic defined as:

𝑠𝑠 = 1 −

⟨

(𝑓𝑓𝑚𝑚 − 𝑓𝑓𝑑𝑑)
2
⟩

⟨

(𝑓𝑓𝑑𝑑 − ⟨𝑓𝑓𝑑𝑑⟩)
2
⟩� (1)

where fm and fd represent the model and data values (e.g., f represents sea level (η) or temperature (T), etc.) and the 
〈 〉 notation represents the mean of the argument over the simulation interval (i.e., <fd> is the mean of the data) 
(von Storch & Zwiers, 1999). No single measure of model performance provides an ideal summary; however, 
s has the useful property that it is 1 when the model and data are in perfect agreement and becomes negative 
when the difference in the model and data is larger than the variance in the data record. Note that since the model 
predicts the average value in a grid cell while in situ data used for validation are obtained at a much higher reso-
lution, even a perfect model would not generally achieve a skill of 1.

In addition to the model skill described by Equation 1, which we will also refer to as the “traditional skill,” 
another useful metric is the Brier Skill. The Brier Skill is a quantification of inter-model skill comparison that 
is calculated by normalizing the mean square error in a model by the mean square error in a second “reference 
model” (Ganju et al., 2016; von Storch & Zwiers, 1999). Like the classic skill metric described above, the Brier 
skill has a value of 1 when the model and data are in perfect agreement. When the model being evaluated outper-
forms the reference model, the Brier skill is positive. If the reference model is in closer agreement with the data, 
then the Brier Skill is negative. If the reference model is taken to be the mean of all the observations, <fd>, the 
Brier skill is equivalent to Equation 1. If, however, the Brier skill is assessed using a reference model consisting 
of monthly climatology from 1991 to 2015 CTDEEP surveys at multiple individual locations throughout LIS, 
then a positive skill score indicates the model outperforms the CTDEEP climatology. Note that outperforming a 
spatial and seasonal climatology is more difficult than outperforming overall observational means and indicates 
that the model can represent inter-annual variability.

3.2.  Sea Surface Height

Table 1 shows s, the model skill (Equation 1), when compared to hourly measurements at the four NOAA tidal 
gauges in LIS: New London, New Haven, Bridgeport, and King's Point. The first row shows the skills when sea 
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surface heights (relative to MSL) are compared, the second and third rows 
show the skills when the elevations are decomposed using t_tide (Pawlowicz 
et al., 2002) into tidal and subtidal components. The table indicates that the 
model skills at tidal frequencies are substantially greater than the subtidal 
skills.

Figure 3 shows the 2013 subtidal sea levels at the four NOAA tide gauge 
stations in LIS (shown in red) compared to the model predictions (shown 
in blue). Note that in addition to capturing the fluctuations due to winds, 
the model is also capturing the seasonal summertime increase in sea surface 
heights that occurs as a result of summertime warming and seasonal changes 
in wind forcing. The model also captures the along-estuary SSH gradient 
that results from the along-Sound density gradient and the mean wind stress. 
Figure 4 shows the model mean along-Sound sea level predictions for 2013 
referenced to MSL at New London.

3.3.  Temperature and Salinity

Figure 5 shows a comparison of surface and bottom model temperatures and the 2013 CTDEEP surveys with 
monthly climatologies derived from 1993 to 2015 CTDEEP surveys. These data are described by Kaputa and 
Olsen (2000) and O'Donnell et al. (2014). The skills listed in the panels were calculated by combining individ-
ual station scores using the mean square methodology described by Ganju et  al.  (2016). The near-surface and 
near-bottom temperature skills of 0.986 and 0.984 shown in Figure 5 are considerably higher than skills from runs 
that only used the WRF heat flux forcing (did not use the SST assimilation), which were 0.72 and 0.85, respectively. 
Note that the CTDEEP data set used to evaluate the temperature skills shown in Figure 5 was not assimilated into 
the model. The high skill scores are indicative not only of the success of the data assimilation itself but also of excel-
lent agreement between the screened remote sensing temperature data and the in situ temperature measurements 
made by the CTDEEP. The near-surface and near-bottom traditional salinity skills are 0.63 and 0.85, respectively, 
with Brier skills of −0.40 and −0.01.

Table 1 
Traditional Model Skills (Equation 1) When Model Elevations Are 
Compared to Gauges in LIS at New London, New Haven, Bridgeport, and 
King's Point

New London New Haven Bridgeport King's Point

η 0.91 0.92 0.93 0.93

η′ 0.94 0.93 0.94 0.94

<η> 0.77 0.75 0.77 0.54

Note. The first row (η), shows the skills when sea surface heights (relative to 
MSL) are compared, the second row shows the skills at tidal frequencies (η'), 
the third row shows the skills for the subtidal residuals (<η>).

Figure 3.  Subtidal sea-level model predictions (blue) compared to NOAA gauge data (red) at the New London (a), New Haven (b), Bridgeport (c), and Kong's Point (d) 
stations in Long Island Sound.
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4.  Heat Flux Estimates
4.1.  Methodology

Since the model-data temperature agreement is good for both the near-surface 
and near-bottom layers, it is worthwhile to infer the net surface heat flux 
fluxes required to produce these temperatures. Assuming no horizontal 
diffusion (this was set to zero in the model) and ignoring pressure effects, 
the tendency of the vertically integrated heat content, 𝐴𝐴 𝐴𝐴 = 𝐶𝐶𝑝𝑝𝑇𝑇 𝑇𝑇 , where 
Cp(T,S) is the specific heat capacity, T is temperature, and ρ(T,S) is density, 
will be equal to the downwards surface flux, P, less the downward benthic 
flux, B, less the vertically integrated advective flux divergence, which can be 
expressed as

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜂𝜂

∫
−ℎ

𝐻𝐻 ⋅ 𝑑𝑑𝑑𝑑 = 𝑃𝑃 − 𝐵𝐵 −

𝜂𝜂

∫
−ℎ

∇ ⋅ (𝐻𝐻𝐮𝐮) ⋅ 𝑑𝑑𝑑𝑑� (2)

where h is the water depth, η is the free-surface elevation, and u is the water velocity.

The FVCOM grid consists of a triangular mesh where scalar values are calculated and output at triangle vertices 
while velocities are calculated and output at the triangle centroids (see Figure 6). Following Chen et al. (2013), 
we refer to the triangle vertices as “nodes” and the triangles themselves as “cells.” The area around each node 
consisting of the polygon whose points are the centroids of the connected triangles and the midpoints of the 
connected sides of these triangles is termed the “tracer control element” or TCE. In this scheme, the scalar fluxes 

Figure 4.  Mean model sea-level predictions (blue) along an along-Sound 
transect plotted by distance from the head of the Sound at the Throg's Neck.

Figure 5.  Plots by month showing surface (top panel) and bottom (bottom panel) temperature comparisons between model predictions (red lines) and monthly 
climatologies from 1993 to 2015 CTDEEP survey data (thin vertical blue bars, ±σ) and the 2013 CTDEEP surveys (thick blue lines). Within each month, the CTDEEP 
stations are plotted by longitude from west to east.
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into or out of the TCE area (shown shaded in Figure 6) are calculated as the sum of the fluxes through the pairs 
of sections defined by each centroid and the midpoints of the two adjacent sides.

The total volume flux into or out of an individual TCE is then 
∑�

�=1
∑2

�=1 ��,���,���,� ⋅ ��,� where N is the number 
of triangles connected to the central TCE node, Li,j are the lengths of the midpoint-to-centroid sections, Di,j are the 
average layer depths along these sections, and ui,j · ni,j are the components of the velocity normal to the sections. 
According to Green's Theorem, the total volume flux into or out of each TCE must also be equal to the change in 
the total volume within the TCE. This is easily calculated as 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∕𝜕𝜕𝜕𝜕 where σ is the normalized layer depth, A 
is the area of the TCE, and η is the areal-mean free-surface elevation. Equating the total fluxes with the volume 
change provides:

𝑁𝑁
∑

𝑗𝑗=1

2
∑

𝑖𝑖=1

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝐮𝐮𝑖𝑖𝑖𝑖𝑖 ⋅ 𝐧𝐧𝑖𝑖𝑖𝑖𝑖 = 𝜎𝜎∫
𝐴𝐴

𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕 ⋅ 𝑑𝑑𝑑𝑑� (3)

When we evaluate Equation 3 using model results at hourly intervals, we find small discrepancies between LHS 
and RHS terms. There are several possible reasons for this small misfit. However, since conservation of mass 
in FVCOM has been extensively tested (Chen et al., 2007), we also impose volume conservation and rewrite 
Equation 3 as:

𝛼𝛼

(

𝑁𝑁
∑

𝑗𝑗=1

2
∑

𝑖𝑖=1

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝐮𝐮𝑖𝑖𝑖𝑖𝑖 ⋅ 𝐧𝐧𝑖𝑖𝑖𝑖𝑖

)

+ 𝛽𝛽 ≈ 𝜎𝜎∫
𝐴𝐴

𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕 ⋅ 𝑑𝑑𝑑𝑑� (4)

where 𝐴𝐴 𝐴𝐴 ≈ 1 and 𝐴𝐴 𝐴𝐴 ≈ 0 are adjustment factors chosen to minimize the misfit between the two sides of Equation 4. 
While α and β could be obtained using a least-squares approach, estimating these for each cell using the first and 
second moments of the two sides of Equation 3 is computationally more efficient. For each TCE, we estimate the 
adjustment factor α by matching the variance of the LHS of Equation 3 to that of the RHS of Equation 3 using 
the entire year record, that is,

Figure 6.  FVCOM unstructured grid. Triangle nodes are shown by solid black circles labeled F; centroids are shown by the 
cross-hatched circles labeled u,v. The shaded area around the center node is the “tracer control element” or TCE. From Chen 
et al. (2013).
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𝛼𝛼 ≅

𝑀𝑀
∑

𝑘𝑘=1

(

𝜎𝜎∫
𝐴𝐴

(𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕)𝑘𝑘 ⋅ 𝑑𝑑𝑑𝑑 −
1

𝑀𝑀

𝑀𝑀
∑

𝑘𝑘=1

𝜎𝜎∫
𝐴𝐴

(𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕)𝑘𝑘 ⋅ 𝑑𝑑𝑑𝑑

)2

𝑀𝑀
∑

𝑘𝑘=1

(

𝑁𝑁
∑

𝑗𝑗=1

2
∑

𝑖𝑖=1

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐮𝐮𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝐧𝐧𝑖𝑖𝑖𝑖𝑖 −
1

𝑀𝑀

𝑀𝑀
∑

𝑘𝑘=1

𝑁𝑁
∑

𝑗𝑗=1

2
∑

𝑖𝑖=1

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐮𝐮𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝐧𝐧𝑖𝑖𝑖𝑖𝑖

)2
� (5)

where M is the total number of model-output records in the time dimension. Likewise, the offset (bias) correction, 
β, is chosen (for each TCE) to match the long-term means of the integrated horizontal volume transports (LHS of 
Equation 3) with the long-term mean of the volume tendencies (RHS of Equation 3):

𝛽𝛽 ≅
1

𝑀𝑀

𝑀𝑀
∑

𝑘𝑘=1

𝜎𝜎∫
𝐴𝐴

(𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕)𝑘𝑘 ⋅ 𝑑𝑑𝑑𝑑 −
1

𝛼𝛼𝛼𝛼

𝑀𝑀
∑

𝑘𝑘=1

𝑁𝑁
∑

𝑗𝑗=1

2
∑

𝑖𝑖=1

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐮𝐮𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝐧𝐧𝑖𝑖𝑖𝑖𝑖� (6)

We use the α and β coefficient approximations obtained from Equations 5 and 6 to estimate the net surface and 
bottom boundary heat flux, P−B, as the vertical sum over Q layers of the difference between the tendencies and 
the adjusted horizontal transport:

𝑃𝑃 − 𝐵𝐵 =

𝑄𝑄
∑
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⎞

⎟

⎟

⎟

⎠

� (7)

Where h is the water depth (i.e., σh is the TCE layer depth). The first term on the RHS of Equation 7 represents 
the volume-corrected horizontal heat fluxes into or out of the TCE; the second term represents the heat tendency 
within the TCE. The j subscripts in the first term of Equation 7 indicate that the horizontal transport values are 
estimated per TCE side and then summed; the tendencies shown by the second term are those within the TCE 
volume.

4.2.  Error Analysis

Model salinity can be used as a conservative tracer in the model to assess methodological errors in using Equa-
tion 7. Since there are no surface or bottom salt fluxes in our model, any net salt tendency should be equal to the 
horizontal flux divergence. Therefore, if Equation 7 is formulated to represent the salt budget, there should be no 
surface or bottom fluxes and Equation 7 should be identically zero. Any non-zero differences in terms of Equa-
tion 7 when evaluated for salt are therefore errors. We normalize the mean square of the error in the integrated salt 
flux by the variance in the salt tendency and consider the square root of this to be representative of the relative 
error in the approach and applicable to our surface heat flux estimates:
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� (8)

where S is the salinity. The error bars shown in Figure 8 show estimates of the uncertainties in the heat flux 
calculations based on Equation 8.

We also assessed whether Equation 7 could reproduce prescribed surface heat fluxes. For model runs that were 
performed without SST data assimilation, the surface heat fluxes are entirely prescribed by the WRF forcing 
input file and there are no bottom heat fluxes. Using output from runs without SST assimilation, we examined 
the differences between these prescribed surface heat fluxes and those obtained using Equation 7. Figure 7 shows 
a scatter plot comparing the fluxes prescribed by the WRF input files with those inferred using Equation 7. 
Perfect agreement would indicate that Equation 7 captures all internal FVCOM calculations with 100% accuracy. 
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Although not perfect, the agreement seen in Figure 7 is consistent with the 
error estimates based on the salt budget and shows an RMS error of only ±10 
W m −2. There is a bias of −8 W m −2 with a tendency for large fluxes to be 
slightly underestimated.

4.3.  LIS Results

Heat exchanges with the bottom sediment and porewater are expected to be 
small. We neglect them and equate the surface heat flux to the RHS of Equa-
tion 7. Because the grid scale of the LIS-FVCOM model is considerably finer 
than the resolution of the SST data, the derived fluxes were spatially filtered 

using an 8  km area-weighted Gaussian filter with weights 𝐴𝐴 𝐴𝐴𝑖𝑖 =
𝑤𝑤
′
𝑖𝑖

𝑊𝑊
 where 

𝐴𝐴 𝐴𝐴
′
𝑖𝑖
=
(

𝑎𝑎𝑖𝑖𝑒𝑒
−𝑑𝑑𝑖𝑖

2∕2𝑟𝑟2
|𝑑𝑑𝑖𝑖<4𝑟𝑟; 0|𝑑𝑑𝑖𝑖≥4𝑟𝑟

)

and𝑊𝑊 =
∑𝑗𝑗=𝑁𝑁

𝑗𝑗=1
𝑤𝑤

′
𝑗𝑗
 , r = 8 km, and ai and di 

are the areas of and distances to the surrounding TCE cells.

Figure 8 shows the monthly mean surface heat fluxes at the LISICOS West-
ern Sound Buoy location (see Figure  1) derived from the LIS-FVCOM 
model using SST assimilation compared with surface heat flux bulk esti-
mates obtained using buoy measurements of water temperature, air tempera-
ture, long and short wave irradiance, relative humidity, and wind speed. The 
estimation of the surface heat fluxes from observations at this buoy used 
the COARE bulk formulae of Fairall et  al.  (2003) and is described in Ilia 
et al. (2023).

Also shown in Figure  8 is our estimate of the horizontal heat exchange 

in the model, shown as the depth-integrated horizontal flux divergence, 

𝐴𝐴

𝜂𝜂∫
−ℎ

∇𝑥𝑥𝑥𝑥𝑥 ⋅ (𝐻𝐻𝐮𝐮𝑥𝑥𝑥𝑥𝑥) ⋅ 𝑑𝑑𝑑𝑑 =
𝜂𝜂∫
−ℎ

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐻𝐻𝐻𝐻) +

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐻𝐻𝐻𝐻) ⋅ 𝑑𝑑𝑑𝑑 where 𝐴𝐴 𝐮𝐮𝑥𝑥𝑥𝑥𝑥 = [𝑢𝑢𝑢 𝑢𝑢] are the horizontal components of the water 

velocity. Note that this is the heat change in the water column per unit areal surface and can thereby be compared 
directly to the surface flux contribution to the depth-integrated heat budget. This estimation of horizontal heat 
exchange in LIS is a result that cannot be obtained from an analysis of meteorological data on its own and one 
which neither Lee and Lwiza (2005) nor Ilia et al. (2023) were able to obtain.

5.  Discussion
In the summer, LIS warms more than the adjacent shelf waters and, therefore, horizontal heat export from LIS 
is expected. Likewise, LIS cools more than the adjacent shelf during the winter and will import heat during the 
winter. Based on an analysis of water-column temperature tendencies in conjunction with surface heat fluxes esti-
mated via bulk formulae, Lee and Lwiza (2005) suggest that inter-annual variability in horizontal heat exchange 
may be a more important driver of inter-annual temperature anomalies in LIS than the inter-annual variability 
in the surface heat fluxes. Lee and Lwiza (2005) were, however, unable to quantify horizontal heat exchanges 
in LIS. Our results (Figure  8) indicate that during the period of summertime warming in May–July 2013, 
50–100 W m −2 of heat was exported from the WLIS buoy location (see Figure 1) on average. As noted previously, 
this is expressed per square meter of water surface so as to be directly comparable with the surface flux. This 
summertime export is substantial and represents about a third of the surface flux. Figure 8 also indicates that from 
September to December, and January to February 2013, the WLIS location imported heat at a rate of ∼25 W m −2 
of areal surface. It is interesting to note that the rate of wintertime heat import due to horizontal exchange is less 
than half that of the summertime export, but lasts two times as long (September–February vs. May–July).

In addition to quantifying the horizontal heat exchange at the WLIS location, our results also offer insight into the 
spatial structure of the net surface heat fluxes and horizontal exchanges throughout LIS. Both the LIS-FVCOM 
hydrodynamic model and the SST observations that together form the basis of our results provide spatial coverage 
of the entire LIS region. Using bulk formulae to estimate heat fluxes, however, requires local meteorological 
data (Ilia et al., 2021). We did not consider benthic fluxes in our derived estimates. These fluxes are likely small, 
and are of order 10 W −2 in lakes with temperatures and depths similar to LIS (Fang & Stefan, 1996). We note, 

Figure 7.  Comparison of prescribed input surface heat fluxes from Weather 
Research and Forecasting (WRF) (x-axis) with fluxes inferred using the 
methodology herein (y-axis.).
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however, that our results actually represent the sum of the surface and bottom 
boundary fluxes and that benthic fluxes into the water column would be 
expected to reduce the amplitude of the seasonal temperature cycle slightly 
and be of opposite sign to the surface fluxes. The magnitudes of our surface 
heat flux results may therefore be slightly underestimated.

Figure  9 shows our estimates of the spatial distribution of seasonal-mean 
depth-averaged temperatures and depth-integrated heat tendencies in LIS. 
Figure 10 shows plots of the spatial distribution of our estimates of the surface 
heat fluxes and horizontal exchanges plotted as the differences between these 
results and the seasonal means of these results (shown by the text in each 
plot). The results shown in both Figures 9 and 10 were spatially filtered using 
an 8 km Gaussian filter as described above.

During the winter and the summer, when horizontal exchange makes a signif-
icant contribution to the LIS heat budget, the flux divergence shows a strong 
spatial structure with the largest exchanges in both seasons occurring in the 
eastern portion of LIS. Figure 10 indicates that horizontal heat exchanges in 
the eastern LIS during winter and summer also impact the surface fluxes. 
In the winter, as warmer shelf water is brought into the Sound, surface 
heat losses due to latent, sensible, and long-wave radiation will increase in 
regions of warmer water due to an increase in the temperature differences 
between the air and the water. Likewise, during the summer, as cooler water 
is advected into LIS from the shelf, increased surface heat gains will occur 
in regions of cooler water. This is consistent with the observations of along 
and across Sound temperature gradients described in O’Donnell et al. (2014) 
and our results indicate that heat exchange in the eastern LIS creates strong 
spatial gradients in the surface heat fluxes during summer and winter. In 
2013, summertime differences between our mean surface heat flux estimates 
in the eastern and western LIS regions are of order 100 W m −2 (Figure 10).

A primary limitation of our methodology is that the spatial scale of the SST 
assimilation data is considerably coarser than the model scale. Lombardo 
et  al.  (2016) discuss similar issues of spatial resolution mismatch in the 
context of using 32  km resolution North American Regional Reanalysis 
(NARR) SST output to initialize a 1-km resolution WRF model used to simu-
late coastal sea breezes in the LIS region. Our FVCOM-LIS model has a 
spatial resolution in LIS on the order of a few hundred meters to a kilometer, 
whereas the SST data we used for the temperature assimilation has a spatial 

resolution of 4 km. Because of the scale mismatch, fluxes in model regions with fine-scale spatial gradients can 
be misestimated when combined with coarser scale products. The summer panels of Figure 10 show an example 
of this problem in the vicinity of the Connecticut River plume (41.2 N, 72.4 E), where large horizontal advec-
tive fluxes due to baroclinic exchange are a primary driver of the estimates of the net surface fluxes. The lower 
resolution of the SST data (along with poor near-shore coverage) is also problematic for estimating local surface 
fluxes in near-shore regions. Low-pass filtering the results below the spatial scale of the SST data solves some of 
these problems, but also indicates that our results should not be used at finer scales in regions of steep gradients. 
Without further refinement, our methodology could not, for example, be used to examine the relative importance 
of autumnal cooling in near-shore shoals since near-shore water temperatures are simply not represented in the 
SST data.

6.  Conclusions
Our LIS results indicate that it is possible to utilize remote-sensing SST data to make estimates of surface heat 
fluxes as the difference between the depth-integrated tendencies and the depth-integrated exchanges in a cali-
brated hydrodynamic model. Fairall et al. (2003) state that the original 1992 COARE goal was to develop flux 
algorithms that could yield monthly mean results within ±10 W m −2 of direct covariance measurements. This 

Figure 8.  Comparison of Long Island Sound (LIS) 2013 surface heat flux 
estimates (W m −2) at the location of the Western Sound buoy calculated from 
buoy observations (red) with those derived from the LIS FVCOM model 
using sea surface temperature (SST) assimilation (blue). Shown in magenta 
is the depth-integrated horizontal flux divergence (W m −2). Error bars for the 
derived model estimates (blue and magenta) are based on the relative errors 
in the salt budget as discussed previously. Error bars for the bulk calculations 
from the buoy observations are ±5% (Fairall et al., 2003), McCardell and 
O’Donnell (2014) made data-based estimates of near-bottom along-channel 
horizontal exchanges of heat, oxygen, and salt from moored instruments 
at several locations in the western LIS. If integrated over a typical WLIS 
10 m bottom layer depth, their results indicate a summertime (late July/
early August 2004 and 2005) horizontal exchange in the WLIS region of 
−50 ± 60 W m −2 (per m −2 surface, see above), which is consistent with the 
summertime exchanges shown in the figure. Note, however, that McCardell 
and O’Donnell (2014) estimated the uncertainty as ±100% whereas the 
model-data synthesis results shown in the figure are an order of magnitude 
better. This figure also indicates that the derived surface fluxes may be slightly 
underestimated. This is consistent both with the small discrepancies that could 
arise out of not modeling benthic heat fluxes and with the methodology results 
shown in Figure 7 where we note a bias error of −8 W m −2 when recapturing 
prescribed fluxes.
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error is similar to our estimate of ±10 W m −2 RMS and −8 W m −2 bias errors in our methodology. As shown in 
Figure 7, the agreement of our derived surface fluxes with those estimated using COARE formulae is excellent, 
although we note that our methodology appears to slightly underestimate the late spring/early summer fluxes. 
These discrepancies could be a result of non-zero seasonal benthic fluxes and/or the tendency of the methodology 
to slightly underestimate large fluxes as seen in Figure 7. Although we have not done so, Figure 7 indicates that 
some systematic bias error could be corrected to further refine the methodology.

Unlike COARE estimates (or direct covariance measurements), our SST and model-derived results are not limited 
to a particular observational location and are therefore able to reveal spatial variability without the expense of an 
observational array. The methodology could also be useful in determining locations where further meteorological 
measurements would be valuable. As shown in Figure 10, our results indicate significant spatial structure of the 
surface heat fluxes in LIS. However, we were only able to compare our results with those from the WLIS buoy 
location (see Figure 1). To further validate or refine our methodology, it would therefore be worthwhile to make 
bulk estimates from measurements in the central and eastern LIS as well. The methodology is also limited by the 
spatial scale of SST observations. The 4 km resolution of the satellite SST is, however, considerably finer than 
the 32 km resolution of the NCEP NARR and the methodology described herein could be a valuable complement 
to NARR heat flux estimates.

Figure 9.  Spatial distributions of depth-integrated Long Island Sound (LIS) heat tendencies (left-hand plots, W m −2) and depth-averaged temperatures (right-hand 
plots, °C) from the sea surface temperature assimilation model results. Winter, spring, summer, and fall are defined as December, January, and February; March, April, 
and May; June, July, and August; and September, October, and November, respectively. The results in each panel are shown as the deviation from the areal-averaged 
LIS mean shown by the text in each panel.
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Data Availability Statement
The sea surface temperature data used in this paper can be obtained from NASA (https://podaac.jpl.nasa.gov/
dataset/MODIS_AQUA_L3_SST_MID-IR_DAILY_4KM_NIGHTTIME_V2019.0) and the LISICOS ERDDAP 
server (http://merlin.dms.uconn.edu:8080/erddap/). The advice and help of Professor C. Chen of the University of 
Massachusetts, Dartmouth, were crucial to this project.
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